

Introduction

Flamable liquids like fuel and hydraulic oil can be found aboard all armord comabt vehicles

Introduction

Combustion and / or burning of these liquids in a shaped charge attack significantly increases losses^(*)

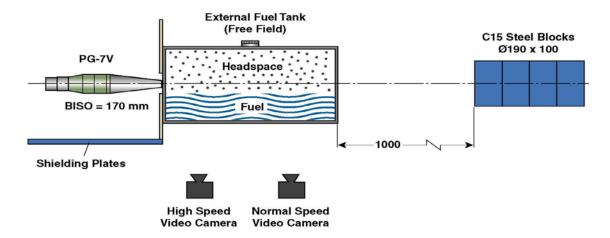
→ inhibiting or mitigating combustion and sustained fires would increase survivability and chance for repair

(*) Wright, B.R. and W.D. Weatherford. 1980. "Investigation of Fire-Vulnerability-Reduction Effectiveness of Fire-Resistant Diesel Fuel in Armored Vehicular Fuel Tanks", AFLRL-Report No. 130, U.S. Army Fuel and Lubricants Research Laboratory, Southwest Research Institute, San Antonio, Texas

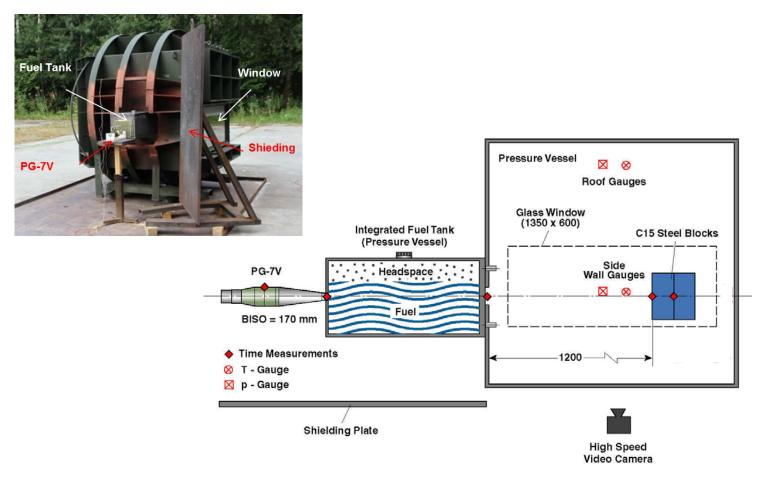
Introduction

Various passive inerting systems have been developed for aircraft fuel tanks

<u>But:</u> not applicable to ground vehicles


- → tests in literature mainly focus on fast-reacting fire extinguishing systems (FES) and on fire-resistant fuels (FRF)
- → details on the ignition of flamable liquids during or after a shaped charge jet penetration has hardly been investigated / documented in open literature
- → To obtain more insight into the processes involved and to identify influencing factors, additional tests were required

Two types of tests were conducted: free-field tests and pressure vessel tests



Two types of tests were conducted: free-field tests and pressure vessel tests

Types of fuel investigated: diesel (F54)

kerosene (JP8)

+ variation of filling level and impact point

Test No.	Setup	Fuel Type	Filling Level	Impact Point
HL56171	free field	diesel	50%	middle
HL56172		diesel	95%	middle
HL56173		kerosene	50%	bottom
HL56174		kerosene	50%	top
HL56175	pressure vessel	kerosene	50%	top
HL56176		kerosene	50%	bottom
HL56177		diesel	50%	top
HL56178		diesel	50%	bottom

Test No.	Setup	Fuel Type	Filling Level	Impact Point
HL56171	free field	diesel	50%	middle
HL56172		diesel	95%	middle
HL56173		kerosene	50%	bottom
HL56174		kerosene	50%	top
HL56175	pressure vessel	kerosene	50%	top
HL56176		kerosene	50%	bottom
HL56177		diesel	50%	top
HL56178		diesel	50%	bottom

Driving questions:

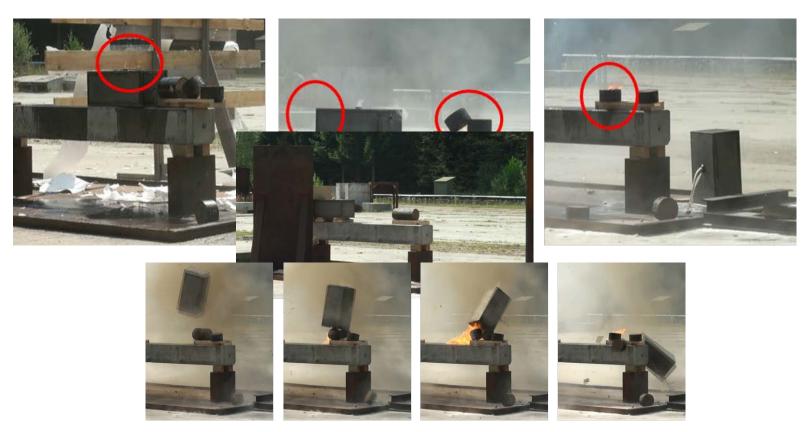
- What are the effects leading to an ignition of the fuel spray?
- Does the impact point on the tank (ullage / liquid column) play a role?
- Are there differences in ignition / combustion of diesel and kerosene?
- Under which circumstances is a persistent fire likely to occur?

Exemplary normal speed video of test HL56171 (diesel; impact on surface level)

Exemplary high speed video of test HL56171 (diesel; impact on surface level)

- → instantaneous combustion of the fuel around the jet
- → no igition / combustion of fuel ejected behind the jet

Specific observations in test HL56174 (kerosene, impact in ullage)


- → second combustion event inside target stack
- → only observed in shot through ullage

Location of sustained fires

- → Practically no pool fires and no spreading
- → Sustained fires limited to hot surfaces

Pressure Vessel Tests

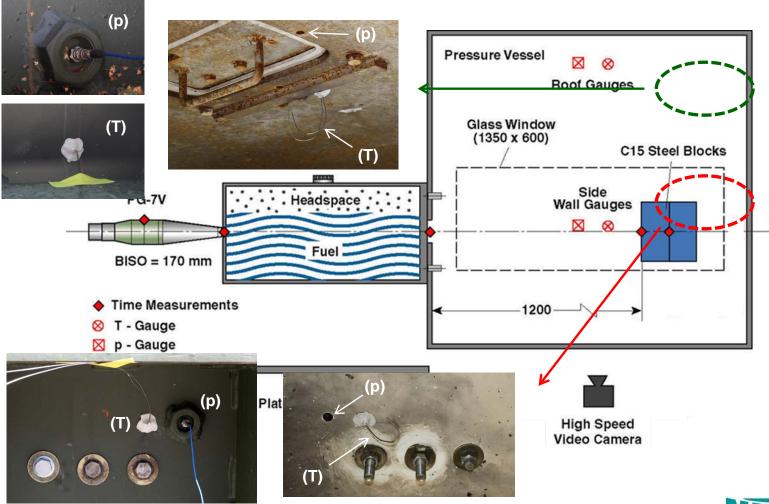
Exemplary high speed video of test HL56176 (kerosene; impact in liquid column)

- → instantaneous combustion of the fuel around the jet
- → no igition / combustion of fuel ejected behind the jet
- → no significant differences to free field tests

Pressure Vessel Tests

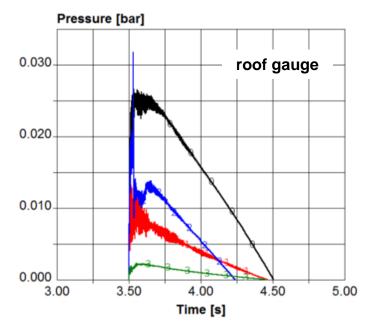
Specific observations in test HL56175 (kerosene, impact in ullage)

- → second combustion event inside target stack
- → again observed in both shots through ullage



Pressure Vessel Tests – Data Measurements

Gauge positions and mounting

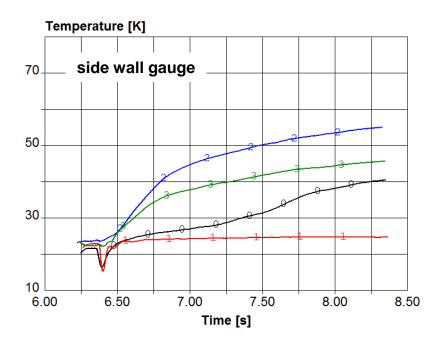


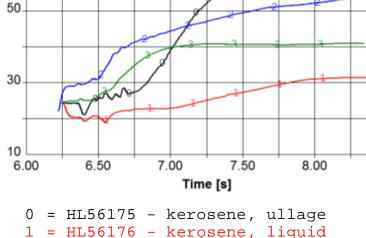
Pressure Vessel Tests – Pressure Recordings

p-t histories recoded at the two gauge positions

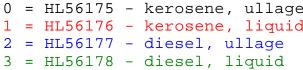
- → Qualitatively and quantitatively unexpected result from roof gauge
- → higher pressure produced by diesel
- → higher pressure when SC strikes the ullage

```
0 = HL56175 - kerosene, ullage
1 = HL56176 - kerosene, liquid
2 = HL56177 - diesel, ullage
3 = HL56178 - diesel, liquid
```



Pressure Vessel Tests – Temperature Recordings


Temperature [K]

70.


roof gauge

T-t histories recoded at the two gauge positions

- → radiant heat and fire ball not captured
- → equilibrium temperature not fully reached
- → results not totally conclusive

8.50

Conclusion

- PG-7V shaped charges were fired on stand-alone fuel tanks and fuel tanks mounted to a pressure vessel
- All experiments exhibited instantaneous combustion of fuel around the jet upon exiting the tank, probably igited by the hot jet / target fragments.
 - → combustion of flamable liquids will always occur in SC attack
 - → spacing between tank and compartment might mitigate combustion effects
- Fuel ejected from the tank behind the jet was not ignited even with strong mixing with air due to shock reverberation inside the pressure vessel.
- A second combustion inside the target stack could be observed in all shots through the ullage (practical relevance of this finding seems questionable).
- Sustained (pool) fires could only be observed on hot surfaces.
 - → fuel and surface temperature seem to be a crucial factor
- Pressure and temperature recordings were only partly conclusive.
 - → differences between diesel and kerosene cannot be explained based on physical or chemical properties
 - → intensity of combustion may not be fully deterministic

Thank You for Your Attention!

